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Abstract

To broaden the adoption and be more inclusive, robotic tutors need to tailor their
behaviours to their audience. Traditional approaches, such as Bayesian Knowledge
Tracing, try to adapt the content of lessons or the difficulty of tasks to the current
estimated knowledge of the student. However, these variations only happen in a limited
domain, predefined in advance, and are not able to tackle unexpected variation in a
student’s behaviours. We argue that robot adaptation needs to go beyond variations in
preprogrammed behaviours and that robots should in effect learn online how to become
better tutors. A study is currently being carried out to evaluate how human supervision
can teach a robot to support child learning during an educational game using one
implementation of this approach.

1 Introduction 1

Compared to lectures, tutoring has been showed to increase the learning gains of 2

humans [4]. In particular, one-to-one tutoring enables a more inclusive teaching, by 3

adapting the content of the lesson and the style of interaction to the needs and 4

preferences of the student. As such, tutoring presents numerous opportunities for social 5

robots in education: teaching language [3], how to write [9], maths or sciences [7]. 6

To be as effective as human tutors, robots should not deliver a one-size-fits-all 7

teaching content; they need to adapt their behaviour to the student they are teaching. 8

Traditional methods of developing adaptable robot tutors have either used predefined 9

behaviours that the robot can switch between or have adapted the difficulty of a class 10

to meet the estimated knowledge of the user. But we are convinced that to thrive, robot 11

tutors need to go beyond and learn how to behave efficiently within each situation. 12

Furthermore, we also wish to empower the teachers who are ultimately leading the 13

teaching and who know their students best. Robots should remain tools in the hands of 14

the teachers, and teachers should have the freedom to shape the robot into their own 15

personalised teaching assistant. To this end, we rely on the teacher to demonstrate to 16

the robot the desired tutoring behaviour using a Wizard of Oz (WoZ) approach. As the 17

robot is exposed to these demonstrations, it learns and starts producing its own 18

suggestions of actions to support the students. Using human feedback and commands, 19

the robot’s action policy improves over time and when the teacher deems this behaviour 20

to be adequate, the robot can take over the tutoring session, interacting autonomously 21

(if desired) with the students and freeing the teacher to work with other students. 22
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2 Related Work: Adapting Teaching Strategies in 23

Robots for Learning 24

To increase the amount of learning children gain from the tutoring setup, robots can 25

adapt their behaviour to suit the preferences and requirements of the student they are 26

teaching. One solution, as used in [8], is to have different empathic strategies such as: 27

encouraging comments, scaffolding, offering help or intentionally making errors. By 28

modelling the child’s preferences and reactions to these strategies the robot can select 29

the most efficient one for each specific child. Other methods use Bayesian Network and 30

Knowledge Tracing to estimate the learner’s knowledge and provide advice on missing 31

skills [10], or select a task and a difficulty level which will maximise the learning 32

gain [6, 11]. Alternatively, if the task requires mainly practice of poor skills (such as 33

handwriting), every aspect of the child’s knowledge can be continuously monitored and 34

training examples can be selected to encourage the practice of these poor skills [9]. 35

One method which goes further than simple adaptation and allows the robot to 36

tackle previously unseen or unanticipated child behaviours as a human tutor would, was 37

introduced by Sequeira et al. in [15]. The authors proposed the restrictive-perception 38

Wizard of Oz: the robot starts as non-autonomous; controlled by a human. Then an 39

autonomous controller is developed from the human demonstrations and hand-coded 40

rules before being deployed to interact autonomously and replicate the human 41

demonstrations. 42

However, in [12] and [13], we argued that the learning of an action policy should 43

occur online, with human supervision. This reduces the workload of the wizard, 44

allowing them to monitor the robot’s learning while ensuring that even in the learning 45

phase, the robot’s behaviour is efficient. While this method originated from the Robots 46

in Therapies field, we are convinced that Robots in Education is an area which would 47

greatly benefit from such an approach. 48

3 Progressive Autonomy for Robots in Education 49

3.1 A teacher-led learning process 50

Developed to reduce the workload on a robot’s supervisor in a therapy scenario, the 51

Supervised Progressive Autonomous Robot Competencies (SPARC) [12] uses online 52

learning from demonstration combined with suggestions from the robot and potential 53

corrections from the teacher to rapidly learn and improve a robot’s action policy. 54

Figure 1. Interaction setup:
the teacher (one of the au-
thors) on the left uses a GUI
on a tablet to control and
teach the robot how to inter-
act with the child until reach-
ing a good action policy.

One advantage 55

of such a technique is that it empowers the 56

end-users, the teachers. They can control 57

the robot’s behaviour in a teaching phase, 58

ensuring that the robot reacts properly to 59

the different behaviours expressed by the 60

child while monitoring the progress of the 61

robot’s learning (Figure. 1). As the robot 62

learns a better action policy, the teacher 63

can step back and focus more on the 64

child’s behaviour while letting the robot 65

progressively take over the tutoring session, freeing the teacher to take care of other 66

children. Keeping the human in the loop and in control of the robot’s actions provides 67

the algorithm access to efficient demonstrations and ensures that incorrect actions due 68

to missing knowledge are corrected before being executed, which ensures quick and 69

efficient learning [13]. Having been demonstrated to work only in simple or discrete (in 70
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space and in time) environments, this method has not yet been evaluated in a 71

real-world, complex environment such as tutoring. 72

3.2 A high-dimensional example: a robot tutor to learn about 73

food chains 74

SPARC for creating a teachable tutor has been implemented in a teaching scenario and 75

is currently being tested with children (source code available 1 2 3). 76

In this study, children are invited to learn about food chains in a gamified and open 77

learning environment. The setup, as shown in Figure 1, uses the Sandtray paradigm [2] 78

whereby a child is interacting with a robot through a large touchscreen sitting between 79

them. The game presents movable animals and passive plants and the goal is to keep 80

the animals alive as long as possible. Animals have energy that decreases as time goes 81

by and the students have to make them interact with other animals or plants to feed 82

them and replenish their energy. As the students learn how to feed animals to keep 83

their energy high, by extension, they can learn what food each animal eats. 84

To support this learning, the robot can provide advice (move an animal to, toward 85

or away from other animals or plants), verbal feedback (remind rules, provide 86

congratulation and encouragement) or draw the child’s attention to an animal. 87

Figure 2. GUI used for su-
pervising: the teacher moves
the bird close to the fly and
selected both of them as rel-
evant feature for this action
(blue and orange circles).
Buttons at the bottom are
used to have the robot pro-
vide feedback.

The teacher uses a tablet running 88

a supervisor GUI replicating the state 89

of the game as it is currently being played on 90

the touchscreen. This GUI allows for remote 91

control of the robot’s actions (highlighting 92

features to speed up the learning by providing 93

relevant dimensions for the algorithm [14]) 94

and receives suggestions from the robot 95

about what action to do next (cf. Figure 2). 96

The robot has access to 655 discrete output actions and an abstracted representation 97

of the state of the game and the interaction through a 210 dimensional vector of values 98

bounded between 0 and 1 (distances between the elements, time since the child touched 99

each elements, time since robot’s actions or time since other interaction events). The 100

system must therefore find a correct mapping between a 210 dimensional input vector 101

to a 655 exclusive output one. Many algorithms can learn in such an environment, but 102

traditional Reinforcement Learning algorithms would take a prohibitive amount of time, 103

exhausting many children as the robot would at first be behaving randomly and 104

providing incoherent messages. As such, a method like SPARC offers an opportunity to 105

quickly learn a useful action policy despite the complexity of the environment. 106

To learn fast, the algorithm used is a variation of the Nearest Neighbours 107

algorithm [5] where actions are defined on a sliced version of the general space [14]. This 108

algorithm allows fast, lightweight and online learning with transparency as the algorithm 109

can highlight which features of the space have been used to make the suggestion. 110

At the start of the first interaction, the database the algorithm has access to is a 111

blank sheet without any actions, and as the supervisor selects actions, the database of 112

demonstrations is filled, associating actions with the value of the state on a subset of 113

the dimensions. As the database becomes richer, the robot suggests a larger number of 114

correct actions, reducing the workload on the teacher until reaching a point where the 115

teacher only has to correct/select a low number of actions to fine-tune the robot’s policy. 116

This setup is currently being tested in primary schools in the UK with children in 117

1https://github.com/emmanuel-senft/freeplay-sandbox-ros-sparc/tree/task
2https://github.com/emmanuel-senft/freeplay-sandbox-qt/tree/food-chain
3https://github.com/emmanuel-senft/freeplay-sandbox-qt-supervisor
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Years 4 and 5 (8-10 years old) with one of the authors (a PhD student in Psychology 118

naive to the algorithm) acting as a teacher. 119

4 Discussion 120

4.1 Future work 121

The current implementation has several limitations that should be tackled in future 122

work. Firstly, for now, the algorithm can only take demonstrations (and negative 123

feedback) as input. It would be interesting to start with a set of rules defining a 124

baseline of behaviour, which could then be refined online by adding either new rules or 125

demonstrations. Additionally, currently the algorithm only reproduces a demonstrated 126

action policy and does not have the opportunity to learn from its interaction with the 127

world. Future work could focus on designing a system which adds the prediction and 128

use of rewards in reaction to environmental events (such as with Inverse Reinforcement 129

Learning [1]) and techniques to model a child’s knowledge to potentially learn an action 130

policy more efficient than the demonstrated one. 131

While allowing the robot to learn faster using initial knowledge from a human, 132

including a supervisor in the action selection loop also limits the time-scale of the 133

interaction. Allowing the human enough time to correct a suggested action requires the 134

addition of a few seconds between the suggestion of an action and its auto-execution, 135

which implies that the rate of action selection has to be below 1 Hz. This delay can 136

reduce the optimality of an action between its suggestion and execution, slowing down 137

the learning process. Future work could explore teaching at different levels of 138

abstraction, giving the teacher time to override only high level actions where exact 139

timing is less critical. 140

4.2 Opportunities 141

The goal of the approach is to provide teachers with a way to create their own 142

personalised robotic tutors, which can be controlled by the teacher and taught how to 143

interact with children according to the teacher’s personal preferences. The robot learns 144

from the first demonstration, and to obtain a correct autonomous action policy the 145

teacher would need to spend enough time to cover the required actions in the domain of 146

application. The time dedicated to teach the robot varies with the complexity of the 147

policies from a few minutes for simple ones to more than one hour for complex ones. 148

However, it needs to be pointed out that while the teacher is teaching the robot how to 149

interact, s/he does also actively support students in their learning in a different, while 150

similar, way than traditional human-to-human tutoring. 151

The mixture between WoZ, learning and autonomy additionally allows the teacher to 152

take a more active supervisory stance for children with more difficulties to offer them an 153

experience tailored to their specific needs, or to select a special (previously taught) 154

action policy for the robot. If the study is successful, we would have demonstrated a 155

way to teach a robot online, an efficient action policy to interact with humans in a 156

complex (high dimensional), indeterministic (children are highly stochastic) 157

environment. This or similar methods could be applied to other domains ranging from 158

personal robotic assistants at home to collaborative manufacturing. 159

Acknowledgements 160

This work was supported by the EU FP7 DREAM project (grant no. 611391) and the 161

EU H2020 Marie Sklodowska-Curie Actions project DoRoThy (grant 657227). 162

4/6



References

1. P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

2. P. Baxter, R. Wood, and T. Belpaeme. A touchscreen-based ‘Sandtray’to
facilitate, mediate and contextualise human-robot social interaction. In
Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference
on, pages 105–106. IEEE, 2012.

3. T. Belpaeme, P. Vogt, R. van den Berghe, K. Bergmann, T. Göksun, M. de Haas,
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