
Learning with Robots in CS and STEM Education: A Case
Study with ISEP-R0B0

Patrick Wang1, Ilaria Renna1, Frédéric Amiel1, Xun Zhang1

1 Institut Supérieur d’Électronique de Paris, 75006 Paris, France

* patrick.wang@isep.fr

Abstract

ISEP-R0B0 is a project which combines a small programmable robot and a visual 1

programming language. Its goal is to provide a full-fledged system at a very low cost, 2

targeting schools but also informal learning situations such as after-class activities. 3

Through the programming and observation of the behavior of the robot, students can 4

learn notions either related to Computer Science or Science, Technology, Engineering, 5

and Mathematics. Since ISEP-R0B0 is still at an early stage, this article focuses on 6

introducing the design of the system and two case studies we plan on conducting shortly. 7

Introduction and Context 8

Research in Computer Science Education (CSE) has long tried to introduce robots 9

in programming courses. Oftentimes, the objective is to foster students’ interest and 10

creativity through “the design of tangible and interactive object using programmable 11

hardware” [14], also known as physical computing. In this regard, results indicate 12

that students experience an increase in motivation [7, 17] and that underrepresented 13

populations in Computer Science (CS) courses feel empowered [16]. However, learning 14

outcomes can vary depending on the context and course taught [2, 4]. 15

Two aspects of programming often cause difficulties to beginners [3,9]: the complexity 16

of a programming language and the structural instructions of a programming algorithm. 17

By focusing on the design of algorithms rather than on the code implementation itself, 18

Visual Programming Languages (VPL) can alleviate these two issues. We can mention 19

the cases of Scratch [12] and App Inventor [6] which were both used to teach fundamental 20

CS principles. A more recent example is the BBC micro:bit project, from which the 21

design of ISEP-R0B0 is inspired. The micro:bit is a “pocket-sized, codeable computing 22

device” which is programmable with an online block-based VPL [1]. Though useful as a 23

tool to foster creativity and increase motivation [17], we could not find any publication 24

identifying the effects of using the micro:bit in acquiring CS and programming knowledge. 25

ISEP-R0B0 is composed of a programmable robot and a VPL. We expect learners to 26

program ISEP-R0B0, and to see the robot itself as a playful tool for the embodiment 27

of CS or Science, Technology, Engineering, and Mathematics (STEM) concepts. Other 28

systems using block-based VPLs were previously designed with similar intents: .NET 29

Gadgeteer [7], LEGO Mindstorms [2], Thymio-II [10], and more recently micro:bit [1]. 30

However, distinctions can be drawn on the granularity of each VPL and on the cost 31

of each product. Indeed, ISEP-R0B0 provides low-level instruction blocks of code to 32

program the robot (in opposition to LEGO Mindstorms or .NET Gadgeteer which 33

1/6



use high-level action blocks). While Thymio-II can translate blocks into a dedicated 34

event-based programming language (in this case ASEBA), ISEP-R0B0 and micro:bit 35

produce more standard programming languages (respectively Python and Javascript). 36

Finally, we wish to design an affordable robot (with a retail price similar to the micro:bit) 37

while providing features present in higher-end robots. 38

The ISEP-R0B0 project is still at an early stage. That is why, in this article, we 39

mainly address the design of ISEP-R0B0 and two case studies. In the first one we want 40

to identify the differences in learning outcomes when a novice programmer (e.g., K-12 41

students) observes the results of her code (which concerns fundamental programming 42

notions such as variables, conditional structures, and loops) on a tangible object instead 43

of only in a web-based simulation. In the second one we wish to explore the use of 44

ISEP-R0B0 in education through the design and enactment of learning scenarios in 45

STEM by programming the robot. In conclusion, we discuss on the results we expect to 46

achieve from these studies and describe our next steps. 47

Design of ISEP-R0B0 48

A key consideration during the design of ISEP-R0B0 is usability. Since we expect a 49

broad range of users (basically, anyone whom is interested in being introduced to CS 50

and programming), the system must (1) allow for a variety of scenarios, (2) be easily 51

programmable, and (3) offer a seamless experience from programming to flashing the 52

program on the robot. 53

Figure 1. A first prototype
of ISEP-R0B0. Board design
and microcontroller unit will
be subject to changes.

The illustration in Fig. 1 depicts a prototypical ver- 54

sion of ISEP-R0B0. It comprises two servomotors, LEDs, 55

an accelerometer, an electromagnet, a microphone, and 56

IR and light sensors. With these components, the robot 57

would be able to move around its surroundings, detect 58

and move objects, and track and move along lines. The 59

board design and microcontroller unit (MCU) will be 60

subject to changes to allow an easier integration of new 61

components and programming of the robot. In particular, 62

we are considering options which use MicroPython1. 63

The second specification takes advantages of VPLs 64

to design programs, as evidenced by studies using block- 65

based programming languages [6, 12,15]. In the case of 66

ISEP-R0B0, we built a VPL based on Blockly2 and embedded it in a web application 67

(see Fig. 2). A decisive factor in favor of Blockly is its ability to easily design new blocks 68

and to generate their equivalent Python codes.

Figure 2. The interface dis-
playing blocks to program
the robot. The equivalent
Python code can be gener-
ated, but is not illustrated
due to space restrictions.

69

To comply with the third requirement, we al- 70

lowed users to generate the Python code from the 71

program designed with blocks. By implementing 72

a script on our server, we can create the equivalent 73

binary file which can be downloaded on the user’s 74

laptop3. By simply dragging and dropping this 75

binary file into the memory storage of the robot, 76

the user can update the firmware of the robot, and 77

thus visualize the results of her program directly 78

from the behavior of the robot. 79

1See https://micropython.org/ for more information.
2See https://developers.google.com/blockly/ for more details on Blockly.
3See https://uflash.readthedocs.io/en/latest/_modules/uflash.html#hexlify for this step.

2/6

https://micropython.org/
https://developers.google.com/blockly/
https://uflash.readthedocs.io/en/latest/_modules/uflash.html#hexlify


Finally, we have planned the design of ISEP-R0B0 to make it possible to add new 80

components, though not doable by any user. The process follows three steps: (1) 81

the soldering of the new component onto the board, (2) the design of the necessary 82

custom block with Blockly, and (3) the implementation of a new method to control the 83

component in the MicroPython library. 84

Case Studies 85

This section introduces two separate case studies. The first one aims towards identifying 86

the benefits of using the robot and/or its simulation for students learning the elementary 87

concepts of programming (i.e., variables, conditional structures, and loops). The second 88

one involves the use of ISEP-R0B0 for STEM education. In particular, the goal is to 89

see whether the use of an easily programmable robot in specific learning scenarios helps 90

learners to understand STEM related notions. In both studies we will consider three 91

participant age groups: primary (6-10 years old), middle (11-15 years old), and high 92

school (16-19 years old). This will let us compare the benefits of using a robot and/or a 93

simulation depending on age and customize STEM experience depending on age. 94

Tangible objects and simulations in CSE 95

Research in CSE which introduces robots shows that students are motivated and eager to 96

use the systems described [2, 4, 5, 17]. However, these projects lack comparison between 97

situations where learners use a tangible robot or a virtual one, sometimes merely because 98

there is no simulation tool embedded into the programming interface. This consideration 99

is for instance highlighted by Fagin and Merkle [4], as they observed the difficulties faced 100

by their students because of the lack of simulation to facilitate the process of developing, 101

running, and debugging their programs. 102

In the case of ISEP-R0B0, we wish to explore the differences in learning outcomes 103

when programming with a tangible object and/or with an equivalent simulation. In the 104

end, the objective would be to create a system in which the tangible object and the 105

simulation can complement themselves in programming learning activities. By enacting 106

learning scenarios which take advantage of both tools and the implemented VPL, we 107

hypothesize that learners can acquire a more complete understanding of key notions of 108

programming. This approach of using both a material and a digital artifact has been for 109

example studied in Mathematics [11]. 110

As a first step, we plan on conducting an experiment which target is to identify the 111

learning outcomes specific to programming with the robot and/or its simulation. The 112

experimental protocol relies on dividing students into three groups: a group which uses 113

the robot, a group which uses the simulation, and a control group which uses both tools. 114

By analyzing the students’ interaction with the VPL and their answers to a pre-test 115

and post-test evaluation, we hope to identify distinct learning benefits stemming from 116

the use of the robot or the simulation. The experimentation will focus on two aspects: 117

(1) the level of comprehension of what variables, conditional statements, and loops are, 118

and (2) how long and to which degree this knowledge is retained. At the end of this 119

experiment, our goal is to design scenarios where students would benefit from using both 120

tools in programming learning activities. 121

As a complementary study, it would be interesting to ask students whether or not 122

they have witnessed differences in behaviors between the robot and its simulation. For 123

instance, if a student programs the robot to move straight forward, the simulation would 124

keep the same direction indefinitely while the real robot might deviate from its initial 125

trajectory due to internal (e.g., wheels might not be exactly parallel) or external (e.g., 126

plane might not be perfectly horizontal) factors. The task here would be for students to 127

3/6



realize that their programs are not wrong, but rather that the differences might originate 128

from a faulty hardware design or from the surroundings of the robot influencing its 129

behavior. 130

ISEP-R0B0 for STEM education 131

The second case study revolves around the use of ISEP-R0B0 in STEM fields, and 132

more particularly in Mathematics and Physics. Based on the constructionist theory 133

of learning [13], such situations are designed to allow students to create and alter the 134

environment in which the robot is moving. Lots of systems already exist for this specific 135

goal and research projects seem to indicate positive results in the students’ learning and 136

motivation (see [8] for a review). 137

We designed a learning scenario based on a classic problem in kinematics: the inclined 138

plane. The main objective for learners would be to calculate the amount of power to 139

give to the motors so that the robot can climb up a slope. Students would be divided 140

into two groups: one group with the robot, the other solving the same problem on a 141

paper. By initializing differently some set-up parameters (such as the inclination of the 142

plane and/or the material composing the surface of the plane), students would have 143

to gather their knowledge on movement, gravity, and static friction and analyze their 144

effects on the robot. 145

We expect to see results suggesting that, through the observation and use of the 146

robot, students have a better understanding of the principles in play in this scenario 147

compared to students working on the same problem on paper. 148

A follow-up study could be to explore the effects of using a VPL for programming 149

a robot in a STEM learning activity. Indeed, out of the 26 systems identified in [8], 150

only five presented a visual programming language. Our concern is that the secondary 151

task of writing lines of code with a complex programming language might interfere with 152

the primary task of solving a problem in Mathematics or Physics. By spending more 153

time analyzing and modeling the problem instead of implementing a technical solution, 154

learners should get a better understanding of the concepts in play. 155

Conclusion and Future Work 156

In this article, we presented ISEP-R0B0 which is composed of two main components: a 157

programmable robot and a web application allowing users to program the robots with 158

a VPL. By interacting with ISEP-R0B0, we expect novice programmers to learn key 159

concepts of CS and/or STEM. The robot adopts a voluntarily simple design in order to 160

comply with our objectives: to be affordable and to diffuse in schools. 161

Concerning STEM activities, the design of ISEP-R0B0 allows for the enactment of 162

learning scenarios. In addition to the one we presented about kinematics, we plan to 163

test other learning scenarios: an objective could be to require students to work with 164

angles in geometry in order to program the robot to make it move out of a maze. 165

From the presented case studies, we expect to draw conclusions on (1) the learning 166

benefits specific from the use of a tangible object or an equivalent simulation, and (2) 167

the effects of using a robot in a STEM learning activity (and the effects of VPLs in such 168

situations). Results from these experiments would also shed light on learning design 169

specific to the use of robots in CS or STEM education. 170

The design and development of ISEP-R0B0 is still on-going, and our next steps 171

consist in finalizing the integration between the robot and the web platform allowing for 172

its programming. We also leave space for new components; in such cases, complementary 173

work must be done to create a custom block for this specific feature within the VPL and 174

to generate the equivalent code lines in Python. 175

4/6



Acknowledgments 176

This project is partially funded by the Fondation Orange.

References

1. T. Ball, J. Protzenko, J. Bishop, M. Moskal, J. de Halleux, M. Braun, S. Hodges,
and C. Riley. Microsoft touch develop and the bbc micro: bit. In Software
Engineering Companion (ICSE-C), IEEE/ACM International Conference on,
pages 637–640. IEEE, 2016.

2. D. C. Cliburn. Experiences with the LEGO Mindstorms throughout the Under-
graduate Computer Science Curriculum. In Proceedings. Frontiers in Education.
36th Annual Conference, pages 1–6, 2006.

3. B. Du Boulay. Some Difficulties of Learning to Program. Journal of Educational
Computing Research, 2(1):57–73, 1986.

4. B. Fagin and L. Merkle. Measuring the Effectiveness of Robots in Teaching
Computer Science. In ACM SIGCSE Bulletin, volume 35, pages 307–311. ACM,
2003.

5. S. Gibson and P. Bradley. A Study of Northern Ireland Key Stage 2 Pupils’
Perceptions of Using the BBC micro:bit in STEM Education. The STeP Journal,
4(1):15–41, 2017.

6. J. Gray, H. Abelson, D. Wolber, and M. Friend. Teaching CS Principles with App
Inventor. In Proceedings of the 50th Annual Southeast Regional Conference, pages
405–406. ACM, 2012.

7. S. Hodges, J. Scott, S. Sentance, C. Miller, N. Villar, S. Schwiderski-Grosche,
K. Hammil, and S. Johnston. .NET Gadgeteer: A New Platform for K-12 Computer
Science Education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, pages 391–396. ACM, 2013.

8. M. E. Karim, S. Lemaignan, and F. Mondada. A Review: Can Robots Reshape
K-12 STEM Education? In Advanced Robotics and its Social Impacts (ARSO),
2015 IEEE International Workshop on, pages 1–8. IEEE, 2015.

9. E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A Study of the Difficulties of
Novice Programmers. In Acm Sigcse Bulletin, volume 37, pages 14–18. ACM,
2005.

10. S. Magnenat, J. Shin, F. Riedo, R. Siegwart, and M. Ben-Ari. Teaching a core cs
concept through robotics. In Proceedings of the 2014 conference on Innovation &
technology in computer science education, pages 315–320. ACM, 2014.

11. M. Maschietto and S. Soury-Lavergne. Designing a Duo of Material and Digital
Artifacts: The Pascaline and Cabri Elem e-Books in Primary School Mathematics.
ZDM, 45(7):959–971, 2013.

12. O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari. Learning Computer Science
Concepts with Scratch. Computer Science Education, 23(3):239–264, 2013.

13. S. Papert and I. Harel. Situating Constructionism. Constructionism, 36(2):1–11,
1991.

5/6



14. M. Przybylla and R. Romeike. Key Competences with Physical Computing.
KEYCIT 2014: Key Competencies in Informatics and ICT, 7:351, 2015.

15. A. Schmidt. Increasing Computer Literacy with the BBC micro:bit. IEEE
Pervasive Computing, 15(2):5–7, 2016.

16. S. Sentance and S. Schwiderski-Grosche. Challenge and Creativity: Using .NET
Gadgeteer in Schools. In Proceedings of the 7th Workshop in Primary and
Secondary Computing Education, pages 90–100. ACM, 2012.

17. S. Sentance, J. Waite, S. Hodges, E. MacLeod, and L. Yeomans. Creating Cool
Stuff: Pupils’ Experience of the BBC micro:bit. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, pages 531–536.
ACM, 2017.

6/6


