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ABSTRACT

As robots continue to acquire useful skills, their ability to teach their individual expertise will provide
humans the two-fold benefit of 1) learning from robots and 2) co-existing or collaborating fluently
with them. For example, robot tutors could help teach handwriting to individual students and delivery
robots could convey their navigation preferences to better coordinate with nearby human workers. As
humans naturally communicate their behaviors through selective demonstrations, and infer others’
through reasoning that resembles inverse reinforcement learning (IRL), we propose a method of
teaching that uses demonstrations informative for IRL. But unlike prior work that optimizes solely for
IRL, this paper incorporates various human teaching strategies (e.g. scaffolding, simplicity, pattern
discovery, testing) to better accommodate human learners. We assess our method with a user study
and find favorable results for our use of pattern discovery, simplicity, and testing, but find mixed
results for our method of scaffolding that advise clear directions for future work.

1 Introduction

As robots become more capable in tasks once accomplished only by humans, the extent of their influence will depend in
part on their ability to teach and convey their skills. From the youngest of us learning to handwrite [1,2] to experienced
practitioners of crafts such as chess, many of us stand to benefit from robots that can effectively teach their mastered
skill. Furthermore, our ability to collaborate fluently with robots partly depends on us understanding their behaviors.
For example, workers at a construction site could better coordinate with a new delivery robot if the robot could clearly
convey its navigation preferences (e.g. when it would choose to go through mud over taking a long detour).

While demonstrations are a natural method of teaching and learning behaviors for humans, its effectiveness still hinges
on conveying a set of demonstrations that is informative and comprehensible. As human reasoning over another’s
decision-making can be partly modeled as IRL (e.g. via Bayesian inference) [3-5], we use inverse reinforcement
learning (IRL) to quantify the informativeness of demonstrations. But unlike prior work that optimizes solely for
IRL [6], this paper incorporates various human learning strategies to further accommodate human learners.

We first employ scaffolding from constructivist learning theory to encourage demonstrations that are not just informative
but also comprehensible. Specifically, we assume a general human learner without prior knowledge and sequence
demonstrations that incrementally increase in informativeness and difficulty. Noting the cognitive science literature that
suggests humans favor simple explanations that follow a discernible pattern, we also optimize for visual simplicity and
pattern discovery when selecting demonstrations. Finally, toward effective festing of the learner’s understanding, we
show that the measure of a demonstration’s informativeness during teaching can be inverted into a measure of expected
difficulty for a human to predict that exact demonstration during testing.

A user study yields favorable results for the optimization of simplicity and pattern discovery, and for our measure of test
difficulty. However, it yields mixed results for our approach of scaffolded teaching and provides insights regarding its
shortcomings. Thus, we end with a reflection on how to further improve the proposed methods in future work.



2 Human Teaching Techniques

We take inspiration from constructivist learning theory and cognitive science in informing how a robot may teach a skill
to a human learner so that the learner may correctly reproduce that skill in new situations.

Scaffolding: Scaffolding is a well-established pedagogical technique in which a more knowledgeable teacher assists
a learner in accomplishing a task currently beyond the learner’s abilities, e.g. by reducing the degrees of freedom of the
problem and/or by demonstrating partial solutions to the task [7]. Noting the benefits seen by automated scaffolding
to date (e.g. [8]), we implement the first of Reiser’s [9] recommendations for software-based scaffolding, which is to
reduce the complexity of the learning problem through additional structure. Specifically, we incorporate this technique
when teaching a skill by providing demonstrations that sequentially increase in complexity and informativeness.

Simplicity and pattern discovery: Studies on explanations preferred by humans indicate a bias toward those that
are simpler and have fewer causes [10]. Furthermore, Williams et al. [11] found that explanations can be detrimental if
they do not encourage the learner to discover patterns or even mislead them with false patterns. We thus also optimize
for simplicity and pattern discovery when selecting demonstrations that naturally ‘explain’ the underlying skill.

Testing: Effective scaffolding requires an accurate diagnosis of the learner’s current abilities to provide the appropriate
level of assistance throughout the teaching process [12]. A common diagnostic method is presenting the learner with
tests of varying difficulties and assessing their understanding of a skill. Toward this, we propose a way to quantify the
difficulty of a test that specifically assesses the student’s ability to predict the right behavior in a new situation.

3 Implementation of Human Teaching Techniques

The robot’s environment is represented as a Markov decision process (MDP). The robot has an optimal policy 7* (i.e
skill) that maps each state s to the action that will optimize the sum of rewards R over an infinite horizon. With no
loss of generality!, we assume that R can be expressed as a weighted linear combination of reward features extracted
from the states, i.e. R = w' ¢(s) [13]. For a handwriting policy, ¢ could include the completeness of letters, spacing
between letters, etc. We assume that the learner is aware of ¢ but not w* (nor how the tradeoffs in w* manifest in
behavior). Thus, how clearly a demonstration reveals w* naturally correlates with the demonstration’s informativeness.

Brown et al. [6] show that using IRL [14], demon-
strations of a policy may be translated into half-
space constraints that constrain the set of reward A
weights for which the policy is still optimal (i.e the

behavioral equivalence class, or BEC). Assuming
that conveying w* is a good proxy for conveying e
the optimal policy, the BEC area can be used to ] T-J

. . . . S —
quantify a demonstration’s informativeness. =

Area of Viable Reward Weights

Y

Ground truth
reward weight

1
1
1
1
I
J
w, (cost for entering a yellow square)
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are assigned to the following reward features ¢: de-
livering the package, entering mud, and taking an
action. The demonstration in the left image of Fig.
1 corresponds to the constraints in the right image.
With a unit cost for each action, the constraints on
viable reward weights intuitively indicate that 1) wg > 10 since a total of 10 actions were taken in the demonstration
and that 2) w] < —2 as the detour around the mud took two actions. Though this demonstration is fairly informative,
another is needed to lowerbound the cost of the mud (for there are instances when the robot will go through mud than
take an extended detour), and so on.

Figure 1: A demonstration of an optimal policy (left) can be trans-
lated into a set of half-space constraints on the possible underlying
reward weights (right) [6].

Scaffolding: Brown et al. [6] proposed the Set Cover Optimal Teaching (SCOT) algorithm for selecting the minimum
number of demonstrations that results in the smallest BEC area. A pure IRL learner is assumed to fully grasp these
few highly nuanced examples that delicately straddle decision-making boundaries and find any other demonstrations
redundant. However, we posit that the BEC area of a demonstration not only inversely corresponds to the amount of

!"These assumptions are rather generous, as any autonomous agent (embodied or not) in any location can in theory express its
environment and its skill like so and utilize the methods outlined in this section.



information it contains about the possible values of w*, but also inversely corresponds to the effort required for a human
to extract that information. Thus humans will likely benefit from additional scaffolded examples that ease them in and
incrementally relax the degrees of freedom of the learning problem.

We begin scaffolding by first sorting all possible demonstrations in order from those with the smallest BEC area (most
informative but hardest to understand) to those with the largest BEC area (least informative but easiest to understand).
Then the demonstrations are clustered (we used k-means, with k=6), so that one may show demonstrations from every
other cluster (to ensure that consecutive demonstrations have sufficiently different areas) from the largest to smallest
BEC area. Finally, demonstrations selected by SCOT are shown to convey the maximum information.

Simplicity and pattern discovery: Though the BEC area of a demonstration provides an unbiased, quantitative
measure of the information transferred to a pure IRL learner, humans are likely also influenced by the medium of the
demonstration, e.g. the visuals. Visible differences between sequential demonstrations can highlight critical features,
while visual clutter that does not influence the robot’s behavior (e.g. extraneous mud not in the robot’s shortest path)
may distract or even mislead the human.

We first encourage pattern discovery by favoring a new demonstration that is visually similar to the previous demonstra-
tion. The aim is to highlight a change in environment (e.g. a new mud patch) that caused the change in behavior (e.g.
robot takes a detour) while keeping all other elements constant. Finally, a measure of visual simplicity is also manually
defined for each domain (e.g. the number of mud patches in a delivery MDP) and out of candidate demonstrations that
are equally similar, the visually simplest is selected.

Testing: A demonstration’s BEC area intuitively captures its informativeness during teaching; the smaller the area,
the less uncertainty there is regarding w*. We propose a complementary and novel idea that the BEC area can be
inverted as a measure of a demonstration’s difficulty as a test, i.e. when a human is asked to predict this optimal behavior
in a new environment. Intuitively, a large BEC area indicates many viable reward weights for a demonstration, and thus
the human does not need to precisely understand w* to correctly predict the optimal behavior. We can also use this
measure to scaffold tests of varying difficulties to gauge the human’s understanding of w* and subsequently 7*.

4 User Studies

We ran an online user study that involved participants learning how to play three gridworld games (i.e. three domains),
where each had a unique optimal strategy based on the rewards and costs associated with various objects and locations.
For each game, the participants would first watch the robot teacher provide a few demonstrations of optimal gameplay.
Then they were asked to play a few unseen instances of the game of varying difficulties, being assessed on whether or
not they correctly reproduced the optimal behavior. For each test, participants were also asked to rank their confidence
in their response on a 5-point Likert scale. Thus the study had two within-subject variables: domain and test difficulty
(low, medium, and high, determined by the BEC area of the test).

The study primarily explored how incorporating human learning strategies when selecting demonstrations impacts a
human’s ability to correctly reproduce the optimal policy. Specifically, it examined how the presence and direction of
scaffolding, and optimization of visuals, would impact the human’s test performance. The between-subjects variables
were scaffolding class (none, forward, and backward), and visual optimization (positive and negative, corresponding
to the maximization and minimization of both simplicity and pattern discovery, respectively). For scaffolding class,
forward scaffolding showed low, medium, then high information demonstrations (from the 5th, 3rd, and 1st BEC
clusters), backward scaffolding showed forward scaffolding’s demonstrations in reverse, and no scaffolding showed
all high information examples from the 1st BEC cluster. A total of five demonstrations were shown for each domain,
always ending with demonstrations determined by SCOT.

5 Results

108 participants were recruited using Prolific [15]. Participants self-reported age (18 to 52, M = 26.57, SD = 8.33) and
gender (roughly 64% male, 34% female, 2% non-binary). Each of the six possible between-subjects conditions studies
were randomly assigned 18 participants, and the order of the domains presented to each participant was counterbalanced.
The domains were designed to be representative of a range of difficulties, and we subsequently average each participant’s
test scores across the domains in all following analyses.

Scaffolding: A two-way mixed ANOVA on test performance revealed a significant interaction effect between
scaffolding class and test difficulty (¥'(4,210) = 2.79,p = .03). Post-hoc pairwise Tukey analyses showed that no



scaffolding yielded significantly better test performance than forward scaffolding for high difficulty tests (p = .05, Fig.
2). Though not statistically significant, a trend of forward and backward scaffolding outperforming no scaffolding on
low and medium difficulty tests was observed as well. Surprisingly, scaffolding class did not have a significant effect on
overall test performance (F'(2,105) = 0.02,p = .98).

Simplicity and pattern discovery: A two-way mixed Interaction Effect between Scaffolding and Test Difficulty
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Figure 2: The influence of scaffolding on learner test
performance depends on test difficulty.

6 Discussion and Future Work

Scaffolding: The unexpected result of backward scaffolding’s on-par performance with forward scaffolding suggests
that though BEC area is a theoretically well-motivated model for a demonstration’s informativeness to a human, it is
insufficient and our scaffolding order likely was not clear cut in either direction. Imagine providing the same example
twice to a human; BEC area would incorrectly conclude that the second example was just as informative as the first.

Furthermore, forward and backward scaffolding (each comprised of low, medium, and high information demonstrations)
yielding higher performance for low and medium difficulty tests over no scaffolding (comprised of only high information
demonstrations), and the relationship being reversed for high difficulty tests, suggests that model-free, imitation learning-
type (IL) reasoning may have also been at play. Though IL is another well-accepted model of how humans learn from
demonstrations or experience (see [16, 17]), it is not obvious when when humans will use IL or IRL. Considering the
observation made by Lage et al. [17] that people may be more inclined to use IL than IRL in less familiar situations, our
participants may have benefited from more extensive pre-study practice and/or additional informative demonstrations.

Future work: 'We propose two directions for future work. First, we note that our selected demonstrations often revealed
information about multiple reward weights at once, which could be difficult to decipher. Instead, we can further scaffold
by teaching about one weight at a time, when possible. Second, Reiser [9] suggests that scaffolding should not only
provide structure that reduces problem complexity but at times induce cognitive conflict to challenge and engage the
learner. The current method of scaffolded teaching assumes that the learner has no prior knowledge. However, we
observed that a subsequent demonstration with smaller a BEC area was sometimes easier to understand because the
robot behaved exactly according to the model we had naturally developed from observing previous demonstrations.
We believe that providing demonstrations which incrementally deviate from the human’s current model will be more
informative to a human and would be better suited to scaffolding.

Simplicity and pattern discovery: Optimizing visuals improved test performance, but only for high information
demonstrations. Perhaps simplicity and pattern discovery could only produce a meaningful reduction in complexity for
high information demonstrations, while those of low and medium information were already comprehensible.

Future work: Interestingly, memory arose as an unforeseen confounder resulting from the study procedure. As
participants could not rewatch previous demonstrations (to enforce scaffolding order), consecutive demonstrations
optimized for visual similarity sometimes led to greater confusion as participants believed they saw different behaviors
in the same environment. Future iterations would benefit from ‘markings of critical features’ as suggested by Wood et
al. [7], e.g. by explicitly highlighting the differences between consecutive environments with visual markers.



Testing: Objective and subjective results strongly support BEC area as a measure of test difficulty for human learners.

Future work: As previously noted, effective scaffolding is contingent on maintaining an accurate model of the learner’s
current abilities. Though this work assumed disjoint teaching and testing phases, learning is far more dynamic in reality.
Important topics to explore thus include selecting an initial set of tests that can accurately discern the learner’s current
knowledge, and knowing when to switch between teaching and testing throughout the learning process.

7 Code and data availability

The code for generating demonstrations using the aforementioned methods can be found in the following repository:
https://github.com/SUCCESS-MURI/machine-teaching-human-IRL.

The code for generating the user study (including videos of the teaching and testing demonstrations) and the data
corresponding to our results can be found in the following repository: https://github.com/SUCCESS-MURI/psiturk-
machine-teaching.
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