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ABSTRACT
There is a growing body of multidisciplinary research on how
robotic systems can be deployed in education and training
by providing personalized tutoring session to the user. So-
cially Assistive Robotics (SAR) is an efficient tool for educa-
tional and health-care purposes. In this work, we present our
SAR system for personalized and adaptive cognitive train-
ing. More specifically, we present the sequence learning task
that provides measures for executive function assessment,
which may indicate learning or even behavior disabilities in
children. This work outlines the designing and evaluation
process of such a system, including data collection and anal-
ysis. The long-term goal of this research is to develop inter-
active machine learning methods towards the design of an
adaptive SAR system that provides a personalized training
session by adjusting the session parameters and the robot’s
behavior to maximize user engagement and performance.

1. INTRODUCTION
Socially Assistive Robotics (SAR) is an area that stud-

ies how robots can be deployed to assist users through so-
cial interaction, as they perform a cognitive or physical task
[7]. The goal of such robotic agents is to build an effective
interaction with the user, so as to enhance their task en-
gagement and thus the effectiveness of the training session.
Such agents can be deployed to various tasks as cognitive or
physical training [5, 12], language learning [9], rehabilitation
exercises [13] and others.

As technology advances and becomes more affordable, SAR
systems can be considered to be an efficient tool for educa-
tional and tutoring purposes. A key feature of SAR sys-
tems is their ability to provide personalized interaction to
the user. Personalization is essential for an effective train-
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ing or tutoring session, since it can enhance the effectiveness
of the session, maximizing user’s training and learning po-
tentials [3]. Personalization can be achieved among different
dimensions. In this work, we focus on two dimensions; task
parameters and robot behavior. More specifically, the sys-
tem can adjust the difficulty of the task in order to provide a
training session that fits user’s abilities and skills, resulting
in an ”optimally challenging activity” [4]. On the other hand,
the instructor (a social robot) can impact the user’s intrin-
sic motivation and task engagement through verbal feedback
during the training/tutoring session [6].

It is important that such systems monitor the user’s atten-
tion (engagement, concentration) and adjust both the task
parameters and their behavior in order to increase user en-
gagement and compliance. However, quantifying engage-
ment is not trivial, since it depends and overlaps with sev-
eral user states as interest, sustained attention, immersion
and (attentional and emotional) involvement [16]. Recently,
Brain Computer Interfaces (BCI) have been used towards
this purpose [8]. More specifically, we propose the use of
passive BCI to measure and utilize user engagement and
concentration during a cognitive task, to improve user ex-
perience and system efficiency. Such sensors can be used
in order to maximize the training session effectiveness, by
personalizing the session. We propose to use the Muse EEG
headset1. Muse has been used to measure concentration
and relaxation [11], task enjoyment [1], adaptive storytelling
[18], pain detection through self-calibrating protocols [10]
and others.

This paper outlines the experimental design and process
for developing a SAR system for personalized and adaptive
cognitive training. We present our use case, the sequence
learning task (Section 3) and the experimental procedure
for the data collection (Section 4). The main contribution
of this work is a publicly available dataset along with a set
of data analysis tools using machine learning and statisti-
cal analysis (Section 5). Our goal through this extensive
analysis is to identify links between user engagement, user
performance, task difficulty, and robot behavior. We discuss
our findings towards the implementation of an autonomous
adaptive SAR system, focusing on the computational as-

1http://www.choosemuse.com/



pects and methods for real-time adaptation and personal-
ization, using Interactive Reinforcement Learning (Section
6).

2. RELATED WORK
SAR systems have been designed for providing assistance

to users during a physical or cognitive task. The target
population varies from children to elderly for several appli-
cations as language tutoring, post-stroke rehabilitation and
personalized education for children with ASD.

In [9], the authors proposed a social robotic platform that
provided personalized language learning sessions to preschool
children, adapting its affective behavior to maximize child’s
engagement and valence. In [6], the authors presented a
social robot designed to engage elderly users in physical ex-
ercise, through motivational behavior. In an educational set-
ting, a SAR system has been proposed for personalized num-
ber concept learning. In this work [3], the authors conducted
an initial data collection from users in order to extract essen-
tial information towards the definition of personalized user
models for an adaptive SAR tutoring system. Moreover,
SAR systems have been deployed to enhance reading en-
gagement through the physiological reading method, as an
educational tool [2]. Our work describes the steps towards
the design, implementation and evaluation of a personal-
ized SAR system for the sequence learning task to enhance
working memory skills, maximizing task engagement and
performance.

3. SEQUENCE LEARNING TASK
For our experimental setup, we deploy the NAO2 robot as

a socially assistive robot that instructs, monitors and evalu-
ates user’s performance during a cognitive task. We present
the Sequence Learning task; a working memory task that
evaluates the ability of a human to remember and repeat a
sequence of items (e.g., letters, number, actions). Sequenc-
ing is the ability to arrange language, thoughts, information
and actions in an effective order. It has been shown that
many chiildren with learning and attention issues have trou-
ble with sequencing [17]. Towards this direction, we present
a cognitive training task for sequence learning.

During the training task, the user has three buttons in
front of them (”A”, ”B”, ”C”) and the robot asks the user to
repeat a given sequence of these letters. The difficulty of the
task is proportional to the sequence length L = [3, 5, 7, 9].
Moreover, the robot can provide feedback after the user com-
pletes a sequence. We examine the influence of different
feedback styles and their relationship with user’s engage-
ment and performance [15]. More specifically, the robot,
after each turn, can either provide positive, negative or no
feedback.

We have defined three different task modes, based on
the way the user needs to reply: (B)uttons, (S)peech and
(F)lanker Test:

1. Buttons Mode: User has to press the correct se-
quence of buttons

2. Speech Mode: User has to repeat verbally the cor-
rect sequence of buttons

3. Flanker Test Mode: User has to identify the middle
letter of the sequence announced (e.g., in ABBAC)

2https://www.ald.softbankrobotics.com/en/cool-
robots/nao

Figure 1: The Sequence Learning training task. The
user is asked to repeat a given sequence, by pressing
the buttons in the correct order. The NAO robot in-
structs and monitors the user during the task. Muse
EEG signals are used to estimate concentration and
engagement levels.

Each task mode requires different user skills and abilities.
We plan to examine user reaction and performance under
task switching conditions. Task switching is an executive
function, and a kind of cognitive flexibility, that involves
the ability to shift attention between one task and another
[14]. However, the scope of this paper is preliminary data
collection and analysis to identify different user skills and
preferences for different task modes and difficulties, as well
as for different feedback types, towards the definition of per-
sonalized models for the sequence learning task.

4. EXPERIMENTAL PROCEDURE
As a first step, in order to collect and analyze interac-

tion data during the sequence learning task, we conducted a
user study. During the experiment, the NAO robot instructs
and monitors the user during the training session, collecting
interaction data as described in Section 5.

At the beginning of the experiment, each user is asked to
take place in front of the robot and wear the Muse EEG sen-
sor. After the task administrator ensures the correct place-
ment of the Muse sensor, the NAO robot greets the user and
describes to them the sequence learning task and the differ-
ent modes3. After the introduction, the robot asks the user
if the process was clear to them. During the task, the robot
performs an action (A0−A5) that defines the difficulty level
or the feedback type of the next turn, as shown in Figure 2.

Figure 2: Robot Actions. For each action, the robot
announces a sequence of the corresponding diffi-
culty.

We defined two different experimental designs, in terms
of how the task difficulty changes. Each user performs the
task for both designs: blocked and mixed. We followed these
two different designs in order to capture user data under
different variations of difficulty. The robot action sequence

3https://www.youtube.com/watch?v=giTwZGaBUtE



(including feedback actions) is predefined and same for all
users.

1. Blocked Design: In this design, the difficulty levels
are gradually increasing from the lowest (L = 3) to the
highest (L = 9) difficulty, for each task mode. Each
user has to perform the task for 9 rounds for each task
mode, resulting in 9 · 3 = 27 rounds.

2. Mixed Design: In this design, the difficulty levels
are mixed and change during the task. Each user has
to perform the task for 12 rounds for each task mode,
resulting in 16 · 3 = 48 rounds.

5. DATA COLLECTION AND ANALYSIS
In our user study, we recruited 15 participants (10 males,

5 females) between the age of 24 and 37. Each experimental
session lasted for about 30 minutes, including the completion
of the consent form (IRB 2017-0375), the task introduction,
the training task and a post-experiment user survey. The
data collected during each experiment are depicted in the
database schema in Figure 3.

Figure 3: The database schema. The database stores
the collected data for each experiment. The DB
structure allows for data mining through querying.

As shown in the schema, the system keeps the following
information for each task session: user ID, task design, task
mode, round ID, robot action, sequence length, completion
time, user performance and EEG raw data. More specifi-
cally, the system stores all absolute and relative EEG band
and concentration values, as well as the headband connec-
tion status indicators (as derived by MUSE). The dataset
and the analysis can be found online4.

In order to get an insight of how we can leverage the
collected data to develop personalized models for the se-
quence learning task, we provide an extensive and multi-
aspect analysis, including machine learning and statistical
analysis. Moreover, a user survey was conducted to evalu-
ate the task itself and the user interaction with the robot.
4http://heracleia.uta.edu/%7Etsiakas/SLdataset.html

5.1 User Survey Analysis
The post-experiment survey discusses the participant’s ex-

perience during the experiment, including their overall in-
teraction with the robot, as well as self-reported enjoyment,
engagement, difficulty and concentration needed during the
experiment.

Figure 4: Users Evaluation for their interaction with
the system.

Figure 4 illustrates that all participants find the interac-
tion with the system at least quiet enjoyable and the ma-
jority finds the system very easy to understand. Also, the
participants reported the difficulty, engagement, and their
concentration at each level of the task as can be seen in Fig-
ure 5. It can be observed that the users’ ratings shift from
(rating of 1) not difficult, not engaging and no concentration
needed to (rating of 6) very difficult, very engaging and high
concentration needed as the difficulty level increases.

Figure 5: User rating on Task Difficulty, Task En-
gagement and Concentration Needed for the differ-
ent difficulty levels

In particular, in Figure 5A most of ratings are below
”Quite”, while in Figure 5B most of the ratings are between
”Not” and ”Very”. In Figure 5C most of the ratings are be-
tween ”Quite” and ”Very”, and in Figure 5D most of the
ratings are at ”Very”. The results of this figure indicate that
Level 1 might be less effective in keeping most of the par-
ticipants engaged and concentrated, and Level 4 might be
too challenging for most participants. However, Level 2 and
Level 3 might be more effective in keeping the participants
engaged and concentrated, and in keeping their performance
high as illustrated in Figure 9.



Figure 6: Overall enjoyment rating for the different
task modes (Buttons, Flanker, and Speech)

Figure 7: User Evaluation on the impact of robot’s
positive/negative feedback on their interaction with
the task and the robot

With regard to different task modes (Buttons, Flanker,
Speech), the majority of participants (80%) reported that
they at least quite enjoyed the Buttons (47%+33%) and the
Flanker (60%+ 20%) modes compared to 67% [47%+20%]
who at least quite enjoyed the Speed mode (see Figure 6).
This finding does not match with the users performance,
since the majority of the participants performed much bet-
ter in the Flanker mode compared to the other two modes
(see Figure 8). Similarly, the participants reported that both
of the positive and negative feedback have at least quite af-
fected their performance (see Figure 7); however, the feed-
back did not affect their performance as discussed in section
5.2.

5.2 Statistical Analysis
In this section, we describe the statistical analysis on the

interaction data. We are interested in investigating how dif-
ferent features correlate to each other (e.g., task difficulty,
robot feedback, task engagement, user performance, com-
pletion time, etc.). We provide an initial analysis using his-
tograms, to get an insight of the data distribution, supported
by an additional statistical analysis to identify possible pat-
terns towards defining personalized user models.

Significant effects were found in accuracy, completion time,
and concentration with respect to Mode (ps < .001), Dif-
ficulty (ps < .001), and Mode × Difficulty (ps < .001).
Generally, users were most accurate, fastest, and concen-
trated least on the Flanker test. Also, users were most ac-
curate, fastest, and concentrated least on the easiest level
of difficulty (3 units in a sequence). These patterns are
further supported by the histograms in Figures 8, 9 and

10. For instance, the somewhat platykurtic distribution for
the Flanker task in Figure 8 also shows that more users
had higher accuracy; because the Flanker task only requires
users to remember one letter, this may have been the easiest
task. Also, there is a difference of distributions of correct
answers based on difficulty, as seen in Figure 9, with the
most amount of accurate responses in the 3-unit sequence.
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Figure 8: Percentage of correct answers per design
and mode.
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Figure 9: Percentage of correct answers per diffi-
culty.

To determine whether feedback (positive, negative, none)
influenced overall performance, a one-way between-subjects
Analyses of Variance (ANOVA) were run. To address vi-
olations of assumptions of normality and homogeneity of
variance (assessed using Shapiro-Wilks and Levene’s tests),
Welch’s F tests of equality of means were calculated, cor-
rected values were reported, and tasks-Howell post-hoc tests
were used. Users were more accurate after receiving no feed-
back, F (2,387.78) = 8.48, p < .001. Users also had faster
reaction times after receiving no feedback, F (2,362.48) =
10.39, p < .001. No significant differences were found be-
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Figure 10: Average Completion Time (ACT) for the
different task modes.

tween positive and negative feedback. Means and standard
errors from this analysis are reported below in Table 1 (sig-
nificant difference is noted by asterisk). Figure 11 shows
the distribution (histogram) of correct answers per feedback
type.

Table 1: User Performance
Feedback Type Accuracy (%) Completion Time (ms)

*None 70 ±2 5.00 ±0.17
Negative 58 ±4 6.40 ±0.46
Positive 57 ±3 6.36 ±0.29
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Figure 11: Percentage of correct answers per feed-
back type.

Though feedback did not have a significant effect on over-
all performance, the analysis suggests some trends. For in-
stance, the mean accuracy scores for negative feedback trials
was higher than for no feedback or positive feedback trials
during mid-levels of task difficulty. In 5-unit sequences, the
average accuracies were: no feedback = 86.4%, positive feed-
back = 81%, and negative feedback = 87.9%. In 7-unit se-
quences, the average accuracies were: no feedback = 52.2%,
positive feedback = 49.4%, and negative feedback = 52.3%.
This could suggest that users did not benefit from feedback
at easier levels because the task may have been too easy, or
because they perceived the feedback to be unnecessary. Sim-
ilarly, users may not have benefited from feedback at harder
levels (>7 units) because the task was too difficult, or be-
cause they were focusing more on the required task. The
statistical analysis on our collected data denotes the need of
personalized models for personalized training sessions.

5.3 Machine Learning Analysis
The purpose of the following ML analysis is to verify the

validity of the proposed dataset and the capability of the
captured data to sufficiently model patterns of user behavior
for personalized training sessions. In particular, we perform
two different types of experiments. In the first experiment,
we train a Random Forest (RF) classifier to predict user per-
formance for a single task round. In the second experiment,

we train a Linear-Regression (LR) model to estimate task
completion time for a given sequence. For both experiments,
we use the collected data for each round (Fig.3), including
the average band and concentration values (EEG).

For the first experiment, we chose RFs against other tra-
ditional methods due to their consistency, when tested on
the proposed dataset (Table-2). However, we provide online
complementary ML approaches that can be used by other
researchers for modeling and comparison, as SVMs, ANNs
and other classifiers. The RF classifier, consists of 100 ran-
domly designed estimators. We evaluate each model using
5-Fold cross validation, each time using 80% of the available
data for training and the rest 20% for testing. Each classifier
is trained two times, one without including completion-time
as a feature and one where completion-time is included. In
total, we trained and tested twelve classifiers based on six
different sub-datasets. The first dataset consists of all the
available data, two sub-datasets were extracted including
only data associated with a specific task design and the last
three sub-datasets were created based only on data related
to a specific task mode. Classification results are shown in
Table-2

Table 2: Classification Accuracy
RF Classifier

With Time Without Time
All Data 0.81 ±0.09 0.77 ±0.07

Blocked Design 0.86 ±0.08 0.81 ±0.11
Mixed Design 0.75 ±0.11 0.74 ±0.11
Flanker Mode 0.79 ±0.15 0.78 ±0.13
Buttons Mode 0.86 ±0.07 0.77 ±0.05
Speech Mode 0.78 ±0.12 0.75 ±0.08

For the second experiment, we deployed a Linear Re-
gression model (Table-3) using the LASSO method (with
α = 0.1). As before, we trained twelve LR models, two for
each of the aforementioned sub-datasets. The first model
takes the user performance into account, whereas the sec-
ond does not. We evaluate each LR model using the Mean
Squared Error and the Variance Score, evaluation metrics.
As it can be derived by equations 1 and 2, a good regression
model is specified by a MSE close to 0 and a VS close to 1.

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2 (1)

V S(y, ŷ) = 1− V ar{y − ŷ}
V ar{y} (2)

These preliminary results indicate that the selected fea-
tures can be sufficiently used to predict user performance
and completion time. During both experiments, we trained
our models using features from all users, resulting in a gen-
eralized model. We argue that training a model using data
from a specific individual or cluster of users can result to a
better accuracy. For example, we repeated the classification
experiments using the data from the cluster of users with
total accuracy above 70%, in both designs. Using only user
performance as a dimension for user clustering, we observe
that the user score classification accuracy increases to 90%
from 81% (Table 2). We argue that personalized models



Table 3: Linear Regression Results
LASSO LR

With Score Without Score
MSE VS MSE VS

All Data 13.01 0.45 13.84 0.41
Blocked Design 8.86 0.61 10.69 0.53
Mixed Design 14.49 0.33 16 0.26
Flanker Mode 5.91 0.07 5.96 0.06
Buttons Mode 7.42 0.61 9.88 0.49
Speech Mode 10.04 0.45 10.72 0.41

across multiple dimensions would increase the classification
and regression accuracy.

6. DISCUSSION AND FUTURE WORK
In this work, we outlined the implementation procedure of

a SAR system employed as a tutor for the sequence learning
task. We provided a detailed description of the experimental
and data collection process, as well as a set of multi-aspect
data analysis. The preliminary results showed that task pa-
rameters and robot feedback may have an effect on the train-
ing session and the interaction with the robot, that varies
from user to user. Our ongoing work includes the training
of a Reinforcement Learning agent using the collected data,
learning different user-specific policies, as described in [19],
applying our proposed Interactive Learning and Adaptation
framework for real-time adaptation. Further studies will be
conducted to evaluate and refine the proposed framework.
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