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Abstract

Robotic patient simulators (RPS) are the most commonly used robot in clinical education,
and provide low-risk, high-fidelity learning experiences. They are life-sized humanoid
robots that can simulate human physiological responses. Commercially available RPSs
lack realistic facial and social cues, which limits their ability to engage human learners
and immerse them in the simulation. This may cause poor skill transfer, which can result
in adverse patient outcomes. We address this by introducing an expressive RPS capable
of conveying expressivity far beyond the state of the art, including pain and neurological
impairment, as well as a new shared control system to support clinical educators. This
paper presents our ongoing work, and discusses its implications for the HRI and medical
education communities.

Introduction
In clinical education, simulation serves as a valuable component to experiential learning at
all stages of one’s career [2]. Simulations enable learners to practice their communication
and procedural skills in a safe, clinically-similar environment without the fear of harming
real patients [10]. These skills may include: patient communication, patient condition
assessment, and procedural practice [6, 12].

One of the most commonly used modalities in simulation are robotic patient simulators
(RPS), which are lifelike android robots that convey realistic patient physiologies and
pathologies. RPSs have been explored in a wide variety of HRI applications [11,13]. RPSs
provide clinical learners with an active learning environment to practice different skills
without harming real patients, and to explore risky clinical scenarios through teamwork
experiences. Research shows that using these simulators increases comprehension,
confidence, efficiency, and enthusiasm for learning [2]. Furthermore, their usage may
reduce preventable medical errors, which kill approximately 400,000 people per year in
hospitals alone, and are the third leading cause of death in the United States [1, 6].

Although using RPSs has a positive influence on the learners’ experiential learning
performance, current commercial simulators suffer from a major design flaw: they are
completely lacking in facial expressions (see Figure 1 (center)). Our prior research
suggests this lack of facial expressivity may lead to adverse patient outcomes [4]. Non-
expressive RPSs break immersion, and may be distracting learners from fully engaging
in simulations, or may cause them to learn the wrong skills, which could create future
problems in how their learning transfers to real clinical spaces. Another challenge to
existing systems is their usability and controllability. Work by our team and others also
shows that current RPS systems are difficult for educators to control, particularly when
running more complex simulations [5, 6].

Our work addresses these limitations on two fronts. First, we are designing an
expressive, low-cost, interactive RPS which will integrate with existing simulator systems.
It has a wider range of expressivity than commercially available systems, including the
ability to express pain, neurological impairment, and other pathologies in its face [6], thus
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more engaging with learners. Second, we are designing a customizable shared control
system which will help reduce operator workload and improve their ability to focus on
educational goals rather than robot controls. This paper discusses our continuing work
to date in this area.

Expressive Robotic Patient Simulator
Despite the critical importance of facial expressions in real life scenarios where nonverbal
cues are crucial for treatment, current RPSs exhibit static faces, and are unable to convey
any form of facial expressions. Humans communicate a great deal of information through
nonverbal means; therefore, RPS systems need to be capable of recognizing, masking, and
synthesizing nonverbal behaviors, such as facial expressions to convey realistic interaction
between a human and robot [6,7]. Moreover, having an embodiment for expressivity has
been shown in the literature as an effective means for communication facilitation between
people and robots [3]. To date, this topic has been underexplored in the literature,
particularly within the context of real-time RPS interaction and control. In our work
to date, we have made the following contributions: developed an automatic method
for real-time facial expression synthesis on physical robots or virtual avatars [9] and
conducted several studies to validate our synthesis approach [6,7]. These are summarized
briefly below.

Figure 1. Left: Simulation cen-
ter setup where a team of medi-
cal learners treat a non-expressive
RPS that is controlled by a medi-
cal simulation operator sitting in
the operating room. Center: An
example of a commonly used inex-
pressive mannequin head. Right:
An example of an expressive RPS
system our team built, that our
team built which is synthesizing
pain.

Real Time Facial Expression Synthesis

One of the main challenges in facially expressive robots is how to synthesize human-like
expressions generally, in a way that is platform independent and adjustable to different
control paradigms. To aid the community, we introduced a generalized automatic
framework for synthesizing the facial expressions on different synthetic faces in real-time,
which we implemented as a Robot Operating System (ROS) module [6,9]. Our synthesis
method is based on performance-driven animation, which maps motions from video of
an operator/educator onto the face of an embodiment (e.g., virtual avatar or robot).

Figure 2 shows an overview of the framework. It is a ROS module which performs
synthesis as follows: After sensing operator’s face with Sensor, S, we use a Constrained
Local Model (CLM)-based face tracker as a point streamer, P , to publish the extracted
facial points from the sensed face. A feature processor, F , subscribes to the published
information, measures the distance of each facial point to the tip of the nose, and
saves 68 distances in a vector to keep track of any changes as extract features. Next, a
translator, T , converts the extracted features to either the servo motor commands of
physical platforms or the control points of a simulated head. Finally, a control interface,
C : C1...Cn makes a readable file for the robot, containing the movement information
and sends it to the robot to control points on a virtual face or actuate motors on a robot.
Using this framework as the software for our bespoke RPS head, our robot can easily
synthesize patient-driven expressions and pathologies on any robotic heads or avatar,
and adjust to varying degrees of freedom (DOF) [8, 9].
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Robot-Centric and Human-Centric Method Validations

Figure 2. Overview of the
proposed method from [9].
Nodes: (1) webcam: records RGB
data, (2) CLM-Z face tracker:
tracks human faces, (3) feature
processor extracts facial features,
(4) translator maps feature points
to control points on the physical
robot or virtual avatar face, and
(5) arduino and servo shield moves
the control points. To date we have run a series of robot-centric and human-centric experiments validating the

effectiveness of this technique for understandable, synthesized, generalizable expressions
on both robots and virtual characters. One robot-centric evaluation included a series of
similarity tests between the input stream of the operator’s face and ultimately actuated
synthesis on the robot (see details in Moosaei et al. [8, 9]). Our results suggest that our
method can accurately map operator facial expressions to both simulated and robotic
faces, and can also operate in real time.

Our most recent human-centric study is described in [6], where we explore how
clinicians and non-clinicians perceive painful facial expressions synthesized on a virtual
character vs. a 21-DOF android robot. Using the autonomous synthesis techniques
described previously, we synthesized pain on a humanoid robot and comparable virtual
avatar. Our experiment included 51 laypersons and 51 clinicians. The goal of our
study was to compare pain perception across the two groups, and explore the effects of
embodiment (robot or avatar) on that perception [6].

Our results showed that clinicians had a lower overall accuracy in detecting synthesized
pain in comparison to lay participants. This finding was consistent with the medical
education literature, and suggests RPS technology may provide additional opportunities
to train (or retrain) clinicians in patient pain perception. Interestingly, our results also
showed that participants were less accurate overall when detecting pain from a humanoid
robot compared to a virtual avatar [6]. This suggests a multimodal approach to using
RPSs in clinical education may be beneficial, a question we will explore further in our
future work.

Shared Control for Clinical Educators
Clinical educators have inherently challenging jobs controlling RPSs given the current
state-of-the-art. They typically sit at control stations watching learners (see Figure 1
(left)), manually changing physiological parameters of the RPS on the fly depending on
the clinical choices learners make. Thus, this is a dynamic learning environment within
which the introduction of autonomous behavior and new functionality must be carefully
considered. Thus, it is critical to carefully study the current ways in which educators
work during simulations in order to best support any changes to their workflow.

We are closely collaborating with a team of clinicians, engaging in an iterative design
process, to create a new shared control system for the RPS. The system will support a
range of adjustable control modalities, including direct teleoperation (e.g., puppeteering),
pre-recorded modes (e.g., hemifacial paralysis in stroke mode), and reactive modes (e.g.,
wincing in pain given certain physiological signals)

As part of our design process, we are engaging in interviews with clinical educators
and learners, as well as conducting observations of live simulations at the UC San
Diego Simulation and Training Center. Learners include a range of professionals at
various stages of their careers, including junior trainees (e.g., medical students, nursing
students), as well as senior clinicians undergoing retraining and re-certification (e.g.,
anesthesiologists, attending physicians). Thus far we observed a series of neurological
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assessment simulations, where learners are required to practice both procedural and
communication skills during the course of their interaction with the RPS.

To date, we have observed several ways in which the RPS is used, including when
it is talking and interacting with clinicians, as well as when it is only briefly awake
before undergoing anesthesia. These observations led to our initial designs (See Figure
3), which included both autonomous control (to keep complexity low while clinicians
are attending to other tasks), as well as supervisory control to support more nuanced
changes in expressivity.

One goal in the design of our system to be able to autonomously display facial
expressions based on other biosignals on the RPS. This is ideal for either predefined
scenarios where little will change during the simulation, or when operators are able to
pre-assign states to the robot while attending to other tasks. For example, while learners
are focusing on trying to determine a proper amount of medication to administer, the
operator can instruct the robot to respond with a series of set expressions depending
on the selections the students make. The operator can then focus their attention on
planning for how the RPS will respond to various medications. Another advantage of
this is if the educator is distracted they do not need to worry about where their facial
position is relative to the camera.

Another goal is to support automatic real-time mapping of the operator’s live video
to the robot’s face using the aforementioned performance driven synthesis system. This
may be useful in cases where unpredicted conditions occur while running a predefined
scenario. To use the previous example, if the learners administer a completely wrong
medication, causing the RPS to go into anaphylactic shock, the operator may want to
create a new set of responses on the fly to match that outcome.

Finally, our system will also support direct manual control of facial expression sliders
(e.g., one slider for each of predesigned expression mode). This can allow operators to
generate simple expression, such as closing the eyes to simulate an unconscious patient.

Figure 3. Initial designs of the
shared control system for clinical
educators. We are engaging in
an iterative design process with
educators and learners.

Discussion and Future Work
Our work explores how to make simulators more diverse, interactive, and immersive
for clinical learners in a simulation educational setting. In our work to date, we have
developed an automatic method for real-time facial expression synthesis on physical
robots or virtual avatars [9] and conducted several studies to validate our synthesis
approach [6, 7]. We also have fabricated a new, low-cost expressive RPS head which is
capable of conveying patient pathologies, and have begun co-designing a shared control
system with clinical educators.

In the coming year we plan to run a series of experiments testing the new RPS and
control system with clinical educators and learners to evaluate its effectiveness in real
world learning environments. We hope this work will help improve the state of the art in
clinical education, as well as help us explore HRI in new experiential learning settings.
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