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Abstract

Challenging math problems without immediate solutions often invite students to ride an
“emotional roller-coaster” [2] through episodes of confusion, frustration, surprise and joy.
Those problem solving experiences provide rich opportunities to cultivate mathematical
perseverance, the mentality to forge ahead in face of ambiguity or difficulty. An ideal
teacher closely monitors the problem solving process and provides cognitive, emotional
or social supports that are often personalized and optimized. Given the potential high
cognitive loads on the teacher who needs to monitor and react in real time, an affect
sensitive social robot has the potential to assist by partnering with human teacher in a
busy classroom. In this paper, we will describe a multi-modal dataset we collected from
multiple sessions of a young child solving math problems coached by his parent tutor.
We report initial findings and their implications in the interaction design of a robotic
companion that responds dynamically to the child’s fine-grained non-verbal behaviors
cues and affect signals in order to foster perseverance. We also describe an ongoing
study involving multiple parent-child pairs with additional data elements.

Introduction 1

Different from math exercises, non-routine math problems are those without immediate 2

solutions. Regular exposures to those challenges help students to cultivate perseverance 3

in face of uncertainty and impasses. Students at young age benefit from high quality 4

coaching with personalized supports adaptive to students’ moment-by-moment 5

cognitive,emotional and social needs [8]. Unfortunately, this level of support is often not 6

feasible given the large student-to-teacher ratio in regular classrooms. 7

Socially assistive robots have been explored recently in education to regulate timing 8

of breaks [11], shape help seeking behaviors [12] or cultivate growth mindset [10], 9

curiosity [5] or creativity [7]. There is not much exploration yet in the area of 10

perseverance in math problem solving context among young students. 11

We envision a companion robot who can partner with teachers to sense and interpret 12

children’s behavioral cues in real time and decide on timing and types of support 13

(cognitive, emotional or social) in coaching problem solving in regular classrooms. It is 14

well known that supports offered too early will deprive students of learning 15

opportunities from productive struggles [9], but delayed support might induce excessive 16

frustration that will undermine children’s confidence. Experienced human teachers fine 17

tune those decision rules possibly from a large number of interactions with children via 18

trial and error. Can a robot learn from human teachers on those critical decisions rules? 19
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We approach this question by observing parents coaching their children in math problem 20

solving at home, which gives us the opportunity to observe how the“home teachers” who 21

have deep understanding of their own children’s ability and personality would respond 22

to their behavior cues when offering supports. We believe that observing parents may 23

give us a better chance to find an optimal response model, as opposed to observing 24

school teachers. They work with large groups of students and are often trained to teach 25

well-defined cognitive skills with less focus on developing perseverance in students. 26

In following sections, we will describe the data we collected from a pilot study on 27

one parent-child pair and the response model of the tutor to the child’s non-verbal 28

behaviors cues. We focus on head pose and eye gaze changes as well as affective signals 29

such as frustration and confusion. We choose to study those cues as they appear to be 30

used by tutors in deciding when and how to intervene. We will also describe an ongoing 31

data collection effort from multiple parent-child pairs augmented with additional 32

modalities and survey data. 33

Methods 34

Data Collection 35

In the first study, we recorded 21 videos of one-to-one problem solving sessions between 36

a 9-year-old boy (a third grader) and his mother (the first author of this paper) as his 37

tutor. Each session began at a time when the child was presented with a problem and 38

ended when the child solved the problem, in some cases with the tutor’s help. The 39

videos were captured in a home environment using a Logitech 1080P webcam with an 40

integrated microphone. The seating position of the tutor and the child (Figure 1) makes 41

it possible to capture the child’s overt intent-to-connect (ITCs), defined as head pose 42

and eye gaze toward the tutor. We captured audio and video from the child, and only 43

audio from the tutor.

Figure 1. Recording setup.
In this seating position, the child’s
intent-to-connects (ITCs or head
pose and eye gaze toward the tu-
tor) are detectable. The child-
facing camera captures the frontal
view of the child’s upper body and
face.
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In a second ongoing study, we are 46

collecting data from about 10 parent-child pairs in 47

their home environment with the similar setup as in 48

first study, augmented with additional data features. 49

In addition to the videos, we also collect children’s 50

handwriting traces during problem solving, recorded 51

along with their speech using the Livescribe 52

Smartpen and notebook 1. We anticipate this 53

additional modality will allow us to gain additional insight into children’s cognitive 54

processes, complementing what is available from videos and audio alone. This data 55

stream is especially valuable at times when children are working on problems silently 56

with their heads down because in those cases neither speech nor facial expression 57

information is available. In addition, we collect survey data using validated instruments 58

for children’s personality traits [6], grit [4], math interests and self-regulation as well as 59

math coaching activities at home. We also collect before and after session 60

questionnaires on children’s emotional states. 61

Annotation and feature extraction 62

As the second study is still ongoing, the remainder of the paper focuses on the data 63

from the first study. We use the manual annotations from all videos in the first study as 64

the basis for our analysis. This includes the child’s ITCs and the tutor’s verbal 65

1http://www.livescribe.com/
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responses. Additionally, we use the affect scores extracted from FACET 2 toolkit on the 66

child’s facial expressions, with respect to joy, surprise, frustration and confusion. Our 67

previous study [2] shows that ITCs and tutor’s verbal responses can be reliably detected 68

using machine learning models built from features extracted from Openface [1] and 69

COVAREP [3] respectively. We also note that FACET has reasonable accuracy when 70

validated by human annotations from sampled video frames. As such, in our future 71

work with the second data set, we plan to apply those validated detectors to analyze 72

videos and audio. 73

Results 74

In the first study, we recorded a total of 21 sessions, accumulating 141 minutes of raw 75

videos with mean length of 6.4 minutes per session, with longest session lasting 14.6 76

minutes and the shortest only about 2 minutes. We focus our analysis on two types of 77

signals likely used by the tutor in response decisions: the overt non-verbal behavioral 78

cues of ITCs and the more subtle affect signals. 79

Does the tutor pays attention to affect signals in her response 80

to the child’s overt ITCs? 81

Our analysis suggests that affect signals play a role in the tutor’s response model to the 82

child’s overt ITCs. This is supported by comparing two linear regression models to 83

explain the delay of the tutor’s response using a combination of ITCs and affect 84

features. Those models are built on 101 instances of ITCs which occurred when child 85

looked at tutor in silence, which represents 17% of 774 ITCs across all sessions. 86

Model 1: ResponseDelay = DurationOfITC + ε 87

Model 2: ResponseDelay = 88

DurationOfITC +Neutral + Confusion+ Frustration+ Joy + Surprise+ ε 89

Figure 2. Regression coef-
ficients for affect variables
from Model 2. Large and posi-
tive coefficients indicate more de-
layed response to a specific affect
comparing to others. Only coeffi-
cient for frustration is significantly
different from zero.
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In the first model, only the duration 90

of ITC is taken into account, while in second model, 91

we additionally include affect features extracted 92

from FACET within the 5s window of each ITC. 93

We then performed a likelihood ratio test comparing 94

the goodness-of-fit between those two nested models 95

with χ2(5) = 12.4 and p = .03. This result suggests 96

that including affect related features improves 97

the fitting of the second model comparing with first 98

model. In other words, the tutor seems to take into account the contextual affect around 99

ITCs, in addition to how long the child looks at her, in her decision of when to respond. 100

Figure 2 shows the relative magnitude of the regression coefficients estimated from 101

model 2 as described above. It is interesting to note that the tutor’s responses to ITCs 102

vary by the affect context surrounding ITCs. In particular, the large positive magnitude 103

of coefficient of frustration affect suggest observing those type of signals significantly 104

increases her delay in response, holding all other variables constant. This seems to be 105

counterintuitive , but it might make sense if her goal is indeed to increase the child’s 106

exposure to frustration therefore provide him with an opportunity to persevere. 107

Confusion has a negative but non-significant coefficient, which could partly be explained 108

by the positive correlation between frustration and confusion noted from our previous 109

study [2]. On the other hand, joy seems to be responded to relatively faster than 110

2https://imotions.com/emotient/
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surprise, which could due to the fact that most of the joy affects occurred when the 111

child solved the problems successfully toward the end, in which cases, tutor immediately 112

offered compliments such as “good job”; while surprise is often associated with the 113

“aha” moment the child encountered in middle of the process, in which case, the tutor 114

would just let him continue the discovery journey on his own. 115

How does tutor respond to child’s standalone negative affect ? 116

In this section, we shift focus to a response model as related to the standalone negative 117

affect episodes (i.e., confusion and frustration) that occurred independent of ITCs. 118

Those episodes were observed in scenarios where the child displayed negative affect 119

without looking at the tutor. Those affect signals are thus different from those that 120

occurred along with ITCs, as analyzed in previous section. 121

Figure 3. An example
of detected negative affects
(Frustration + Confusion)
episodes. This plot shows the
output of the automatic nega-
tive episode detector (red colored
bands) overlaid with smoothed
time series of negative affect for
video No.12
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In order to detect episodes of negative 122

affect, we post-processed the raw output of affect 123

scores and identified exceedances where the negative 124

affect scores are above a certain threshold (α). we 125

then cluster those exceedances into episodes. Two 126

consecutive exceedances are clustered into the same 127

episode if they occur within β seconds. we then 128

filter out those episodes lasting less than γ seconds. 129

We calibrate those parameters by visually inspecting 130

the time series of affect scores overlaid with detected negative affect episodes, as shown 131

in Figure 3 as one example. With α=.5 ,β=5s, and γ=5s we identified 92 negative affect 132

episodes. We verified that none of the episodes overlaps with any of the non-dialogue 133

ITCs analyzed in previous section. 134

Figure 4. Comparison
of response time toward
standalone negative affect
episodes and non-dialogue
ITCs Mean of difference in re-
sponse time to two different types
of events, with 95% confidence
intervals.
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As shown in Figure 4,there was a significant 135

difference in the response time to 92 negative affect 136

episodes (M=21.7s, SD=2.9s) and 101 non-dialogue 137

ITCs (M=13.7s and SD=2.3s); t(177.54)=2.14, 138

p=0.034. Comparing with non-dialogue ITCs, 139

the delayed response to negative affect might reflect 140

tutor’s interpretation of standalone negative affect as 141

more definite signals of help request, in which cases, 142

she would rather to let the child struggle longer. 143

Conclusion 144

In this paper, we analyzed the tutor’s response time to the child’s affect signals and 145

non-verbal behaviors cues of ITCs. We note that tutor responded differently to those 146

two different types of signals. we also notice that tutor seems to delay the response to 147

negative affect whether or not they are accompanied by ITCs, which could link to 148

tutor’s intention to maximize child’s opportunity to practice perseverance. We believe 149

this line of investigation has the promise to provide objective and useful insights into 150

the interaction design for affect sensitive companion robots in fostering perseverance in 151

child’s math problem solving activities. 152
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